Exact Ramsey numbers of odd cycles via nonlinear optimisation

نویسندگان

چکیده

For a graph G, the k-colour Ramsey number Rk(G) is least integer N such that every k-colouring of edges complete KN contains monochromatic copy G. Let Cn denote cycle on n vertices. We show for fixed k?2 and odd sufficiently large,Rk(Cn)=2k?1(n?1)+1. This resolves conjecture Bondy Erd?s large n. The proof analytic in nature, first step which to use regularity method relate this problem theory one nonlinear optimisation. allows us prove stability-type generalisation above establish correspondence between extremal k-colourings perfect matchings k-dimensional hypercube Qk.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-colored Ramsey Numbers of Odd Cycles

Recently we determined the Ramsey Number r(C7, C7, C7) = 25. Let G = (V (G), E(G)) be an undirected finite graph without any loops or multiple edges, where V (G) denotes its vertex set and E(G) its edge set. In the following we will often consider the complete graph Kp on p vertices and the cycle Cp on p vertices. A k−coloring (F1, F2, . . . , Fk) of a graph G is a coloring of the edges of G wi...

متن کامل

Ramsey Numbers of Trees Versus Odd Cycles

Burr, Erdős, Faudree, Rousseau and Schelp initiated the study of Ramsey numbers of trees versus odd cycles, proving that R(Tn, Cm) = 2n− 1 for all odd m > 3 and n > 756m10, where Tn is a tree with n vertices and Cm is an odd cycle of length m. They proposed to study the minimum positive integer n0(m) such that this result holds for all n > n0(m), as a function of m. In this paper, we show that ...

متن کامل

Multipartite Ramsey numbers for odd cycles

In this paper we study multipartite Ramsey numbers for odd cycles. We formulate the following conjecture: Let n ≥ 5 be an arbitrary positive odd integer; then, in any two-coloring of the edges of the complete 5-partite graph K((n − 1)/2, (n − 1)/2, (n − 1)/2, (n − 1)/2, 1) there is a monochromatic Cn, ∗2000 Mathematics Subject Classification: 05C55, 05C38. †Research supported in part by the Nat...

متن کامل

Guessing Numbers of Odd Cycles

For a given number of colours, s, the guessing number of a graph is the base s logarithm of the size of the largest family of colourings of the vertex set of the graph such that the colour of each vertex can be determined from the colours of the vertices in its neighbourhood. An upper bound for the guessing number of the n-vertex cycle graph Cn is n/2. It is known that the guessing number equal...

متن کامل

Planar Ramsey numbers for cycles

For two given graphs G and H the planar Ramsey number PR(G,H) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G or its complement contains a copy H . By studying the existence of subhamiltonian cycles in complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2020.107444